

FUNDAÇÃO PRESIDENTE ANTÔNIO CARLOS DE CONSELHEIRO LAFAIETE BACHARELADO EM ENGENHARIA DE MINAS

WELLINGTON FERNANDO DE ANDRADE

BENEFICIAMENTO DE MINÉRIO DE FERRO:

A importância da caracterização tecnológica na definição de rota de processo

CONSELHEIRO LAFAIETE 2018

WELLINGTON FERNANDO DE ANDRADE

BENEFICIAMENTO DE MINÉRIO DE FERRO:

A importância da caracterização tecnológica na definição de rota de processo

Trabalho de Conclusão de Curso apresentado ao Curso de Engenharia de Minas da Faculdade Presidente Antônio Carlos de Conselheiro Lafaiete, como requisito parcial para obtenção do título de Bacharel em Engenharia de Minas.

Orientador: Prof. Me. Paulo Penha Santana

CONSELHEIRO LAFAIETE 2018

WELLINGTON FERNANDO DE ANDRADE

BENEFICIAMENTO DE MINÉRIO DE FERRO:

A importância da caracterização tecnológica na definição de rota de processo

Trabalho de Conclusão de Curso apresentado ao Curso de Engenharia de Minas da Faculdade Presidente Antônio Carlos de Conselheiro Lafaiete, como requisito parcial para obtenção do título de Bacharel em Engenharia de Minas.

Orientador: Prof. Me. Paulo Penha Santana

Aprovada em / / 2018

BANCA EXAMINADORA

Professor Me. Paulo Penha Santana Fundação Presidente Antônio Carlos

Professor: Fundação Presidente Antônio Carlos

AGRADECIMENTOS

Primeiramente agradeço a Deus por me proporcionar força, determinação, coragem e principalmente objetivo.

A minha mãe que é o meu sustentáculo, aos meus irmãos, os meus tios e tias e a todos(as) que sempre estiveram ao meu lado.

Aos professores que contribuíram com minha formação, em especial, meu orientador professor Paulo Penha Santana.

Ao coordenador e professor Adriano Raimundo Totou por sempre ajudar nas questões acadêmicas preteridas.

Aos colegas de sala, pelo comprometimento nos trabalhos realizados em grupo e a interação de todos em prol do objetivo final, que é a formação.

A banca examinadora, pelas importantes observações apresentadas.

Muitos dizem que sou apenas mais um atentar. Eu digo que sou menos um a desistir.

(Diego Marchi)

RESUMO

O presente trabalho avaliou a caracterização de duas amostras de minério de ferro proveniente da região do Quadrilátero Ferrífero, e através dos resultados obtidos, foi possível avaliar a necessidade e importância de se ter um conhecimento dos materiais que se deseja processar, conhecer pelo menos as características relevantes do material e algumas particularidades , para se ter uma expectativa de produtos gerados, embora a caracterização tecnológica de minérios seja uma etapa bastante relevante pois, é nesta fase que definirá a rota mais convincente para assim, ter uma redução dos custos em todo os processos subsequentes, mas sem o conhecimento prévio e com certo grau de confiança, não é possível tomar a melhor decisão. Daí a necessidade de realizar estudos fundamentais com os materiais para melhor compreensão das necessidades de aplicação de tecnologias, visando reduzir possíveis perdas ou aumento de custo dos processos industriais, neste trabalho foi avaliado os resultados de operações de rotas diferentes para os materiais estudados.

Palavras-chave: caracterização, operações unitárias, rotas de processo.

ABSTRACT

The present work evaluated the characterization of two samples of iron ore from the Quadrilátero Ferrífero region, and through the results obtained, it was possible to evaluate the need and importance of having a knowledge of the materials to be processed, relevant characteristics of the material and some particularities, in order to have an expectation of generated products, although the technological characterization of minerals is a very relevant stage, because it is at this stage that the most convincing route will be defined in order to have a reduction of costs in all subsequent processes, but without prior knowledge and with a certain degree of confidence, it is not possible to make the best decision . Hence the need to carry out fundamental studies with the materials to better understand the technology application needs, in order to reduce possible losses or increase the cost of the industrial processes, in this work the results of operations of different routes for the studied materials were evaluated.

Keywords: characterization, unit operations, process routes.

LISTA DE FIGURAS

Figura 1. Esquema do interior da terra	14
Figura 2. Distribuição das reservas de minério ferro no Brasil.	19
Figura 3. Fluxograma de preparação das amostras	23
Figura 4 - Fotografia do Jigue Estático	25
Figura 5 - Fotografia do separador magnético	25
Figura 8 - Fotomicrografia da amostra WFA-01	33
Figura 9 - Fotomicrografia da amostra WFA-02	34

LISTA DE QUADROS

Quadro 1- Classificação dos minérios de ferro do quadrilátero ferrífero.15

LISTA DE TABELAS

Tabela 1 - Fórmula química e teores de ferro (%) dos principais minerais de ferro.	.15
Tabela 2 - Principais óxidos e oxihidróxidos de ferro	.16
Tabela 3 - Principais características dos óxidos hidróxidos de ferro	.17
Tabela 4. Resultados da análise granulométrica da amostra WFA-01	.28
Tabela 5. Resultados da análise granulométrica da amostra WFA-02	29
Tabela 6. Resultados da análise granuloquímica da amostra WFA-01	31
Tabela 7. Resultados da análise granuloguímica da amostra WFA-02	.31
Tabela 8.Resultados na análise mineralógica das amostras WFA-01 e WFA-02	32
Tabela 9. Resultados do grau de liberação do Quartzo das amostras WFA-01 e	
WFA-02	32
Tabela 10. Resultado do teste de concentração por jigue (- 6.35 + 0.15 mm) da	
amostra WFA-01	35
Tabela 11 Resultado do teste de concentração por jigue (- 6 35 + 0 15 mm) da	.00
amostra W/FA-02	35
Tabela 12 Resultado do teste de concentração por separação magnética (- 0.15	.00
mm) do amostro WEA 01	26
Tabala 12. Desultada da testa da concentração por concreção magnético (DOM	.30
Tabela 13. Resultado do teste de concentração por separação magnetica (ROM	20
cominuido em 0,15 mm) da amostra VVFA-01	.30
Tabela 14. Resultado do teste de concentração por separação magnetica (- 1,0 +	~~
0,15 mm) da amostra WFA-01	.36
Tabela 15. Resultado do teste de concentração por separação magnética (- 0,15	
mm) da amostra WFA-02	.37
Tabela 16. Resultado do teste de concentração por separação magnética (ROM	
cominuído em 0,15 mm) da amostra WFA-02	.37

Tabela 17. Resultado do teste de concentração por separação magnética (- 1,0 +	
0,15 mm) da amostra WFA-02	38
Tabela 18. Resultado da lama gerada da amostra WFA-01 após deslamagem	.38
Tabela 19. Resultado da lama gerada da amostra WFA-02 após deslamagem	.39
Tabela 20. Resultado da flotação da amostra WFA-01 faixa <0,15mm	.39
Tabela 21. Resultado da flotação da amostra WFA-01 do ROM cominuído em	
0,15mm	.40
Tabela 22. Resultado da flotação da amostra WFA-02 faixa <0,15mm	.40
Tabela 23. Resultado da flotação da amostra WFA-02 do ROM cominuído em	
0,15mm	.40
Tabela 24. Resultado dos parâmetros de qualidade da flotação das amostras WFA	4-
01 e WFA-02	.40

SUMÁRIO

1 INTRODUÇÃO	12
1.1 Problema da Pesquisa	13
1.2 Objetivos	13
1.2.1 Objetivo Geral	13
1.2.2 Objetivos Específicos	13
1.3Justificativa	13
2 REFERENCIAL TEÓRICO	14
2.1 Minério de ferro	14
2.2 Óxidos, Oxihidróxidos e Hidróxidos de Ferro	15
2.3 Hematita, Martita, Magnetita e Goethita	16
2.4 Reservas mundiais e brasileiras de minério de ferro	18
2.5 Quadrilátero Ferrífero	19
2.6 Processamento de minérios de ferro	20
3 METODOLOGIA	23
3.1 Composição das amostras	23
3.2 Caracterização da amostra	23
3.2.1 Análise granulométrica	23
3.2.2 Análise química	24
3.2.3 Análise mineralógica	24
3.4 Testes tecnológicos	24
3.4.1 Testes experimentais	24
3.4.2 Testes em escala de bancada	24
3.4.4 Parâmetros de avaliação dos testes de concentração	27
4 RESULTADOS E DISCUSSÕES	28
4.1 Análise granulométrica da amostra global	28
4.2 Análise granuloquímica dasamostrasWFA-01 e WFA-02	30
4.3 Análise mineralógica das amostras WFA-01 e WFA-02	31
4.4 Resultados dos testes de concentração por separação magnética	ı das
amostras WFA-01 e WFA-02	34
4.5 Resultados dos testes de concentração por separação magnética	ı das
amostras WFA-01 e WFA-02	35

4.5 Resultados dos testes experimentais de deslamagem das amostras WFA-01
e WFA-02
4.5 Resultados dos testes experimentais de flotação das amostras WFA-01 e
WFA-02
REFERÊNCIAS44

1 INTRODUÇÃO

Devido à grande importância do minério de ferro para a economia mundial, e sabendo-se que suas reservas são da ordem de 170 bilhões de toneladas. A extração e o processo de tratamento desse bem mineral compõe um grande setor econômico brasileiro. Somente no Brasil suas reservas representam 13,5% das reservas mundiais. A produção mundial de minério de ferro em 2016 foi estimada em 2,23 bilhões de toneladas, sendo o Brasil responsável por 17,5% dessa produção, cerca de 391 milhões de toneladas (U.S GEOLOGICAL SURVEY,2017, tradução nossa).

A caracterização tecnológica proporciona a diminuição de resíduos e alguns poluentes que são expostos na natureza que diminuirá os impactos ambientais.

Com isso, o aumento dos ganhos financeiros para todos os envolvidos nas etapas, englobando a mineralogia até a transformação de um bem mineral.

É exatamente, nessa análise que distinguirá a composição mineralógica de um bem mineral tais como, o teor, quantidade de um mineral e etc.

Em relação à caracterização mineralógica na mineração sua importância em síntese e o processo minerário que tem um valor econômico que possibilita o uso otimizado de alguns recursos naturais.

Estágios de uma caracterização mineralógicas:

Granulometria, separação da amostra, composição mineralógica, quantificação do minério, liberação etc;

O que vem a ser uma caracterização mineralógica?

O termo empregado refere-se a um estudo tecnológico de um determinado minério ou tipologia que, em alguns casos, ainda não tinha sido estudado. As empresas de mineração, como também alguns estudiosos do ramo, devem possuir um relacionamento estreito de informações para visualizar a extração e exploração dos bem minerais de uma forma eficaz. Os estudos que envolvem análises qualitativas e quantitativas dos minérios são bem interessantes e por sinal, importante também já que os resultados dos mesmos darão sequência em uma lavra minerária.

Os estudos, as técnicas dependerão da tipologia do minério por que, cada minério tem uma forma intrínseca de estudos abaixo apresentaremos alguns testes para caracterizar o minério:

1.1 Problema da Pesquisa

Em função da crescente demanda por produtos derivados do minério de ferro, faz com que as Empresas de extração deste minério, busquem um aumento na produção e é através da caracterização tecnológica, otimização dos processos, com base em novas tecnologias capazes de suprir assuas necessidades e que mantenham, ou melhore a qualidade do produto.

Desta forma, a caracterização tecnológica vem de encontro para um melhor aproveitamento da matéria prima, que é um bem natural não renovável.

1.2 Objetivos

1.2.1 Objetivo Geral

Caracterizar duas amostras de minério de ferro e comparar os resultados dos ensaios para definição da melhor rota de processo.

1.2.2 Objetivos Específicos

Avaliar a possibilidade de geração sem concentração das amostras estudadas;

Avaliar a rota de concentração gravítica; Avaliar a rota de concentração magnética e Avaliar a rota de concentração por flotação.

1.3Justificativa

Em função da necessidade de otimização e melhor aproveitamento da matéria prima, é necessário realização da caracterização tecnológica detalhada para tornar os processos viáveis no que tange, os custos benefícios em comum.

2 REFERENCIAL TEÓRICO

2.1 Minério de ferro

O núcleo da Terra é composto basicamente de níquel e ferro e representa cerca de 17% do volume de nosso planeta. A porção externa do núcleo é fluida e fica a cerca de 5.155km da superfície da Terra. A parte sólida do núcleo encontra-se a cerca de 6.371km de profundidade e apresenta temperaturas estimadas entre 2.000 e 5.000°C. Uma outra parte denominada por manto é composta principalmente de oxigênio, ferro, silício e magnésio e forma 82% do volume da Terra. Entre o manto e o núcleo existe uma região chamada de descontinuidade de Gutenberg. Entre o manto e a camada externa, denominada crosta terrestre existe uma região denominada Moho. A crosta terrestre tem cerca de 0,6% do volume total do planeta e é constituída, principalmente, por silício e magnésio em sua porção interna e silício e alumínio em sua porção externa (POPP, 1984). Na Figura 1, pode ser visualizado um esquema do interior da terra.

Fonte: www.fgel.uerj.br/dgrg/webdgrg/HOMEPAGEOCEANO/GG6_Estrutura%20da%20Terra.html

Dentre uma variedade de minerais que possuem o ferro em sua composição, poucos são considerados mineral-minério, ou seja, minerais que podem ser explorados economicamente. Os principais minerais de ferro são: magnetita, hematita, goethita, limonita, ilmenita, siderita, pirita e pirrotita. A Tabela. 1 apresenta a fórmula química desses minerais e seus respectivos teores de ferro em porcentagem.

Mineral	Fórmula química	Conteúdo teórico de ferro							
Magnetita	Fe ₃ O ₄	72,4							
Hematita	Fe ₂ O ₃	69,9							
Goethita	Fe ₂ O ₃ .3H ₂ O	62,9							
Limonita	2Fe2O3•3H2O	59,8							
Ilmenita	FeTiO ₃	36,8							
Siderita	FeCO ₃	48,2							
Pirita	FeS ₂	46,5							
Pirrotita	Fe _(1-x) S	61,0							
	anta (DNDES SETODIAL 2014 n	100)							

Tabela 1 - Fórmula química e teores de ferro (%) dos principais minerais de ferro.

Fonte: (BNDES SETORIAL, 2014, p.198)

Dorr e Barbosa (1963) classificou os minérios de ferro do quadrilátero ferrífero de acordo com o Quadro 1 abaixo:

Quadro 1. Classificação dos minérios de ferro do quadrilátero ferrífero.

Hematita	Dura (Compacta) Mole (Friável) Intermediária
Minério Friável	
Canga	
Itabirito	

Fonte: (Dorr e Barbosa, 1963, adaptada)

O minério de ferro possui grande importância para a economia brasileira e mundial, pois é altamente utilizado pelo homem para suprir as demandas de aço no setor industrial. As reservas de minério de ferro no Brasil estão localizadas em sua maioria nos estados de Minas Gerais, Mato Grosso do Sul e Pará. Em Minas Gerais, elas estão localizadas no Quadrilátero Ferrífero, que assim foi denominado devido aos vastos depósitos de minério de ferro encontrados nele.

O Quadrilátero ocorre numa área limitada de aproximadamente 7.000 km² pelas linhas que ligam Itabira, Rio Piracicaba, Mariana, Congonhas do Campo, Casa Branca e Itaúna. (SANTANA, P., 2012)

2.2 Óxidos, Oxihidróxidos e Hidróxidos de Ferro

Até hoje são conhecidos na natureza treze óxidos, oxihidróxidos e hidróxidos de ferro. Os mais importantes estão listados na Tabela 2. Além deles, existem ainda Fe (OH)2, -Fe2O3, - Fe2O3 e FeOOH de alta pressão. Todos os óxidos e

oxihidróxidos consistem de Fe, O e/ou OH, diferindo em composição, na valência do Fe e, acima de tudo, na estrutura cristalina (SCHWERTMANN & CORNEL, 1991).

Oxihidróxidos		Óxidos	
Fórmula	Mineral	Fórmula	Mineral
α- FeOOH	Goethita	α-Fe ₂ O ₃	hematita
β- FeOOH	Akaganeíta	Y-Fe ₂ O ₃	maghemita
Y-FeOOH	Lepidocrocita	Fe ₃ O ₄	magnetita
^δ - FeOOH	Ferroxihita	-	-
Fe ₅ HO ₈ 4H ₂ O	Ferrhidrita	-	-

Tabela 2 - Principais óxidos e oxihidróxidos de ferro.

Fonte: (SCHWERTMANN & CORNEL, 1991).

2.3 Hematita, Martita, Magnetita e Goethita

DANA (1976) e RAMDOHR (1980) descrevem os dados gerais dos principais óxidos e oxihidróxidos de ferro do ponto de vista do beneficiamento de minério de ferro no Quadrilátero Ferrífero, e destacam os seguintes minerais: hematita e martita (Fe₂O₃), magnetita (Fe₃O₄) e goethita (FeO.OH). As principais características destes oxihidróxidos de ferro podem ser vistas na Tabela 3.

Nome	Hematita e Martita	Magnetita	Goethita
Fórmula Química	Fe ₂ O ₃	Fe ₂ O ₄	FeO.OH
Densidade	4,9 a 5,3 g/cm ³	5,18	-
Densidade do Cristal	5,26 g/cm ³	5,18 g/cm ³	4,37 g/cm ³
Dureza	5,5 a 6,5	6,0	5,0 a 5,5
Cor	Castanho avermelhada a preto	Preto	Castanho amarelado a acastanhado escuro
Brilho	Metálico	Metálico	Adamantino a opaco
Traço	Vermelho acastanhado	Preto	Castanho amarelado
Composição	70,0 % Fe e 30,0 % O	72,4% Fe e 27,6%O	62,9% Fe 27,0% O e 10,1% H ₂ O
Composição na microscopia de luz refletida	Muito brilhante e branca, em comparação com sulfetos amarelos, e especialmente com o ouro, a hematita aparece embaçada e muito azul – acinzentada, quando em contrastes normais. (RAMDOHR, 1980).	A reflectividade é moderada ,a primeira impressão de cor é um cinza ,com tonalidades variáveis de marrom claro (RAMDOHR, 1980).	A cor e os valores da refletividade variam bastante ,dependendo do polimento ,porosidade ,tamanho de grão etc. (DERR et al ,1977; RAMDOHR 1980).

Tabela 3 - Principais características dos óxidos hidróxidos de ferro.

Fonte: adaptada pelo autor

O termo minério de ferro é utilizado com uma ampla gama de significados, dificultando a compreensão da finalidade de seu uso. Foi utilizado inicialmente na petrografia como sinônimo de minerais acessórios opacos, ocorrendo a sua utilização também como uma alternativa para minerais como a hematita e a magnetita e como sinônimo para formações ferríferas em geral (MORRIS, 1985). Partindo da premissa de que minério é uma definição basicamente econômica, controlada por questões políticas, tecnológicas e de infraestrutura, dentre outras (EVANS, 1987), o termo minério de ferro deveria ser utilizado, preponderantemente, referindo-se a um

agregado de minerais que está sendo ou poderá vir a ser explotado com vantagem econômica devido ao seu conteúdo de ferro.

2.4 Reservas mundiais e brasileiras de minério de ferro

As reservas mundiais (medidas e indicadas) de minério de ferro são estimadas em aproximadamente 330 bilhões de toneladas, e as maiores estão localizadas na Ucrânia, Rússia e China, totalizando aproximadamente 170 bilhões de toneladas, ou seja, cerca de 50% do total mundial. Austrália e Brasil ocupam, respectivamente, o quarto e o quinto lugar nesse *ranking*, baseado apenas na massa de minério. Contudo, quando se considera o conteúdo de ferro das reservas, a classificação dos países se altera. A China perde posição passando para o quarto lugar em virtude do baixo teor de Fe de seu minério (cerca de 30%). Por outro lado, a Austrália passa a ocupar a terceira posição devido ao alto teor de Fe de seu minério (cerca de 62,5%). O Brasil, mesmo continuando na quinta posição com 6,8% das reservas, ocupa um lugar de destaque no cenário mundial (JESUS, 2004).

As reservas brasileiras de minério de ferro encontram-se fortemente concentradas nos estados de Minas Gerais e Pará. Além desses, Mato Grosso do Sul e São Paulo completam a lista dos estados com reservas dignas de nota. Na Figura 2 é apresentada a distribuição das reservas brasileiras de minério de ferro (QUARESMA, 2001).

Em Minas Gerais as reservas e a produção concentram-se na região denominada Quadrilátero Ferrífero, na porção central do Estado; no Pará, na Serra de Carajás; no Mato Grosso do Sul, nos municípios de Corumbá e Ladário, na porção noroeste do Estado, região do Pantanal Sul-Mato-Grossense na fronteira com a Bolívia. Considerando-se essas três regiões onde o minério de ferro é extraído e beneficiado, observam-se algumas diferenças entre os teores médios de ferro contido. No chamado Quadrilátero Ferrífero em Minas Gerais, que respondeu por quase toda a produção de minério de ferro até 1986, o teor médio alcança 55% de ferro contido; na Serra de Carajás no Pará, 65% de ferro contido; na região de Corumbá no Mato Grosso do Sul, esse teor médio contido alcança 60% (QUARESMA, 2001).

Figura 2. Distribuição das reservas de minério ferro no Brasil.

Fonte: (adaptado de QUARESMA, 2001).

2.5 Quadrilátero Ferrífero

O Quadrilátero Ferrífero compreende uma área de aproximadamente 7.000 km² na porção central do Estado de Minas Gerais, e constitui uma das áreas clássicas da geologia pré-cambriana do mundo. Segundo DORR II (1959), o Quadrilátero Ferrífero de Minas Gerais foi assim denominado devido aos vastos depósitos de minério de ferro que ocorrem numa área limitada aproximadamente pelas linhas que ligam Itabira, Rio Piracicaba, Mariana, Congonhas do Campo, Casa Branca e Itaúna.

A geologia do Quadrilátero Ferrífero é bastante complexa e existem no mínimo três séries de rochas sedimentares separadas por discordâncias principais. As rochas da área encontram-se dobradas, falhadas e foram metamorfizadas em graus variáveis (DORR II, 1959). Do ponto de vista geotectônico, está inserido na Província São Francisco, situando-se no extremo sul do Cráton¹de mesmo nome e corresponde a um fragmento crustal poupado, em parte, da Orogênese Brasiliana (ALMEIDA, 1977; ALMEIDA E HASSUY, 1984). O Cráton do São Francisco é em grande parte resultado do retrabalho em eventos posteriores de um maior e mais antigo núcleo estável denominado Cráton Paramirim de idade pré-transamazônica. Durante o evento Brasiliano foram geradas faixas de dobramento que hoje margeiam e definem a forma do Cráton do São Francisco (ALMEIDA, 1981).

¹*Crátons*: são blocos da crosta que atingiram estabilidade ao longo do tempo e que devido a sua relativa rigidez experimentaram somente deslocamentos verticais.

2.6 Processamento de minérios de ferro

Os fatores determinantes para a adoção dos fluxogramas de processamento dos minérios de ferro podem ser divididos, de uma maneira genérica, em fatores intrínsecos e extrínsecos ao minério a ser processado. Como fatores intrínsecos ao minério, pode-se considerar as características físico-químicas do *ROM (run of mine):* a distribuição granulométrica, a granulometria de liberação das partículas minerais, os teores químicos e as associações mineralógicas. Já como fatores extrínsecos, as características físico-químicas desejadas para o seu transporte e destinação nas etapas metalúrgicas subsequentes, como, por exemplo, aglomeração (briquetagem, sinterização e pelotização), redução em alto-forno ou processos de redução direta, ditarão os quesitos de qualidades físicas, químicas e metalúrgicas para esses produtos. Adicionalmente, os fatores econômicos envolvidos nas operações de adequação dessa matéria-prima mineral serão também, indubitavelmente, avaliados na definição das rotas de processo.

Os minérios de ferro ricos que atendem naturalmente às especificações químicas do mercado consumidor são tipicamente processados em circuitos de fragmentação, classificação por tamanho (processo a úmido) e desaguamento. As operações de classificação a úmido e desaguamento favorecem a remoção das lamas argilosas, onde se concentram as impurezas indesejáveis, principalmente fósforo e alumina (Coelho, 1984; Silva e Valadares, 1988).

O fluxograma de beneficiamento do minério de ferro variará de acordo com as características físicas, químicas e mineralógicas do minério. (COELHO, 1984; SILVA & VALADARES, 1988, apud Reis, 2015), minérios ricos em ferro, são tipicamente processados em circuitos de fragmentação, classificação por tamanho (processo a úmido) e desaguamento.

Para os minérios com baixo teor de ferro a concentração é feita geralmente por métodos gravídicos, por concentração magnética e por flotação. Quando a liberação dos minerais de interesse da ganga ocorre em faixas granulométricas mais grosseiras o método gravídico é utilizado. Já em casos de minérios que requerem moagem fina para a liberação dos minerais de interesse da ganga, como os minérios itabiríticos, a concentração é feita, na maioria das vezes, por separação magnética de alta intensidade a úmido e flotação catiônica reversa, sendo muito comum uma combinação dos mesmos (REIS, 2015).

Os produtos do beneficiamento de minérios de ferro têm três classificações distintas que variam de acordo com a sua granulometria e características, das quais dependem da sua posterior utilização na indústria. As três são (USIMINAS, 2017):

- Granulado (*Lump ore*): é o material grosseiro gerado apenas pelo cominuição e classificação do ROM e tem granulometria entre 6,35mm e 32mm.
- Sinter Feed: material que precisa passar pelo processo de aglomeração para ser utilizado no alto forno e possui tamanho de partículas variando entre 0,15mm e 6,35mm.
- Pellet Feed: material que também precisa passar pelo processo de aglomeração para ser utilizado no alto forno e possui tamanho de partículas finas com granulometria abaixo de 0,15mm.

Para geração dos principais produtos da mineração de minério de ferro, são utilizados os processos de beneficiamento a seguir:

- Fragmentação
- Classificação
- Concentração
- Amostragem
- Manuseio dos materiais
- Disposição dos rejeitos
- Desaguamento

Os minérios de baixo teor de ferro, como foi descrito acima, necessitam de moagem mais fina para serem concentrados e normalmente geram produtos com a granulometria de *sinter feed* e *pellet feed* dependendo das características de cada minério.

No processo de cominuição, são utilizados como sendo os principais equipamentos os britadores e os moinhos, sempre em conjunto com um equipamento de classificação, já na classificação são utilizadas as peneiras, os classificadores mecânicos e os Hidrociclones.

Na concentração onde é separado o material útil do material de ganga, é interessante que o ROM já tenha passado pelos processos de cominuição e classificação, uma vez que temos opções de processos para esta etapa, e os mesmos exigem tamanhos de partículas distintos para se ter uma melhor eficiência do

processo de separação/concentração. A seguir, temos os principais processos de concentração:

- Separação/concentração gravítica
- Separação Magnética
- Flotação
- Seleção Mecanizada, através de dispositivos automáticos de detecção, identificação e separação.

Vale salientar que a maioria dos processos de concentração são realizados a úmido para se ter uma maior eficiência e com isto, é necessário à introdução das etapas de desaguamento para realização da separação sólido – líquido do beneficiamento e as principais operações são:

- Sedimentação
- Filtragem
- Centrifugação
- Secagem.

Em cada etapa do processo é necessário que haja transporte dos materiais entre um processo e outro incluindo também o transporte até as áreas de estocagem, esta operação pode ser chamada de manuseio de materiais, além do manuseio, precisamos também de retirada de partes representativas dos materiais tanto no beneficiamento, como na pesquisa e também nos produtos, esta operação e denominada de amostragem E para finalizar, precisamos de um local pré-determinado para destinação dos materiais que não transformam em produtos, esta é uma operação que denominamos de disposição de rejeitos.

3 METODOLOGIA

3.1 Composição das amostras

As amostras de ROM deste trabalho, é proveniente do Quadrilátero Ferrífero e apresenta teor aproximado de 40% de ferro global na amostra denominada de WF-01 e 40,0 % de ferro global na amostra denominada de WF-02. As amostras passaram pelo processo descrito pela Figura 03.

Figura 3. Fluxograma de preparação das amostras

3.2 Caracterização da amostra

Para a caracterização da amostra foram realizadas análises granulométrica, química global e por faixas e mineralógica.

3.2.1 Análise granulométrica

A análise granulométrica da amostra foi realizada utilizando-se peneiras da marca Granutest, peneiras quadrada de 500 cm x 500 cm até a abertura de 6,35 mm peneiras redondas com 200 mm de diâmetro e 50 mm de altura nas aberturas abaixo de 6,35 mm, com aberturas de 32,0 mm, 25,0 mm, 19,0 mm, 16,0 mm, 12,5 mm, 9,0 mm, 6,35 mm, 4,75 mm, 3,35 mm, 2,35 mm, 1,67 mm, 1,18 mm, 1,0 mm, 0,85 mm,

Fonte: Autor, 2018

0,600 mm, 0,425 mm, 0,300 mm, 0,212 mm, 0,150 mm, 0,106 mm, 0,075 mm, 0,053 mm, 0,045 mm, 0,038 mm, 0,025 mm, 0,020 mm e < 0,020 mm.

3.2.2 Análise química

As análises químicas foram realizadas no laboratório de uma empresa terceirizada utilizando fluorescência de raios–X. O teor de PPC foi determinado por calcinação em forno mufla, a 1000°C.

3.2.3 Análise mineralógica

A análise mineralógica foi realizada no laboratório da própria Empresa utilizando procedimento interno padrão.

3.4 Testes tecnológicos

3.4.1 Testes experimentais

Os testes experimentais em bancada foram realizados com o objetivo de determinar antecipadamente variáveis a serem adotadas nos testes de bancada.

3.4.2 Testes em escala de bancada

Os testes de jigagem foram realizados em escala de bancada, sob condições controladas, com faixa -6,35 mm + 1,0 mm, utilizando o jigue estático que pode ser visualizado na Figura 4, utilizando um tempo de estratificação de 15,0 minutos, com uma frequência de 55 Hz/minuto e uma amplitude de 6,0 cm.

Figura 4 - Fotografia do Jigue Estático

Fonte: Autor, 2018

Os testes de concentração magnética foram realizados em escala de bancada, sob condições controladas, com faixa - 1,0 mm + 0,15 mm, utilizando o separador magnético de bancada de fabricação Imbrás de alto campo magnético que pode ser visualizado na Figura 5, utilizando placas de abertura de 2,5 mm.

Figura 5 - Fotografia do separador magnético

Fonte: Autor, 2018

Os testes de flotação foram realizados em escala de bancada, sob condições controladas, no Laboratório da Empresa, Estes ensaios foram realizados com a faixa <0,15 mm natural e com o ROM moído a 0,15mm após a deslamagem, sendo que a deslamagem foi realizado em baldes de 20 litros com 20,0 % de sólidos e pH, 10,5. A Figura 6 apresenta a célula de flotação utilizada nos testes de flotação.

Fonte: Autor, 2018

O volume útil da cuba é calculado deixando-se 1 cm de altura para a formação da espuma, com o rotor mergulhado e em funcionamento (900 rpm). O volume total da cuba utilizada é de 850 cm³.

Os seguintes reagentes foram utilizados:

Função de coletor/espumante:

- Amina: Industrial

Função de depressor:

Amido de milho indústrial

A dosagem de reagente utilizada foi determinada em testes experimentais.

Após a obtenção dos resultados, os dados foram inseridos em planilhas eletrônicas e fechados os balanços de massas.

3.4.4 Parâmetros de avaliação dos testes de concentração

O desempenho dos testes experimentais foi avaliado nos seguintes parâmetros:

- Teor de ferro no concentrado;
- Teor de sílica no concentrado;
- Teor de ferro no rejeito;
- Recuperação Mássica $R = \frac{C}{A} \times 100$.
- Recuperação Metálica $Rm = \frac{Cc}{Aa} \times 100$.

Onde:

C = massa de concentrado;

A = massa da alimentação;

c = teor de ferro no concentrado;

a = teor de ferro na alimentação.

(Índice de seletividade)

 $IS = \sqrt{\frac{\% \text{ Fe no concentrado x \% SiO_2 no rejeito}}{\% \text{ Fe no rejeito x \% SiO_2 no concentrado}}}$

4 RESULTADOS E DISCUSSÕES

4.1 Análise granulométrica da amostra global

Os resultados da análise granulométrica da amostra WF-01 e WF-02 estão apresentados nas Tabela 04 e Tabela 05.

Amostra WFA-01								
Distribuição Granulométrica (%)								
Malba (um)	Massa	Porcentagem (%)						
Maina (pin)	Massa	R	etida	Passante				
	(g)	Simples	Acumulada	Acumulada				
32000	0,0	0,00	0,00	100,00				
25000	67,5	2,35	2,35	97,65				
19000	7,0	0,24	2,60	97,40				
16000	54,0	1,88	4,48	95,52				
12500	112,0	3,91	8,39	91,61				
9000	140,0	4,88	13,27	86,73				
6350	250,0	8,72	21,99	78,01				
4750	12,0	3,38	25,37	74,63				
3350	18,0	5,07	30,44	69,56				
2350	13,0	3,66	34,10	65,90				
1670	13,3	3,75 37,84		62,16				
1180	11,0	3,10	40,94	59,06				
1000	4,0	1,13	42,07	57,93				
850	4,0	1,13	43,19	56,81				
600	6,0	1,69	44,88	55,12				
425	4,0	1,13	46,01	53,99				
300	7,7	2,17	48,18	51,82				
212	11,0	3,10	51,28	48,72				
150	19,0	5,35	56,63	43,37				
106	22,0	6,20	62,82	37,18				
75	24,0	6,76	69,58	30,42				
53	21,0	5,91	75,50	24,50				
45	16,0	4,51	80,00	20,00				
38	17,0	4,79	84,79	15,21				
25	13,0	3,66	88.45	11,55				
20	6,0	1,69	90,14	9,86				
< 20	35.0	9.86	100.00	0.00				

Tabela 4. Resultados da análise granulométrica da amostra WFA-01.

Amostra WFA-02								
Distribuição Granulométrica (%)								
Malba (um)	Massa	F	Porcentagem ((%)				
Maina (µm)	Iviassa	R	etida	Passante				
	(g)	Simples	Acumulada	Acumulada				
32000	0,0	0,00	0,00	100,00				
25000	0,0	0,00	0,00	100,00				
19000	86,6	3,25	3,25	96,75				
16000	76,0	2,85	2,85 6,09					
12500	100,0	3,75	9,84	90,16				
9000	165,0	6,18	16,02	83,98				
6350	285,0	10,68	26,70	73,30				
4750	10,0	2,57	29,27	70,73				
3350	23,5	6,04	35,31	64,69				
2350	22,0	5,65 40,96		59,04				
1670	22,0	5,65	46,60	53,40				
1180	19,0	4,88 51,48		48,52				
1000	6,0	1,54	53,02	46,98				
850	6,0	1,54 54,56		45,44				
600	13,0	3,34 57,90		42,10				
425	10,0	2,57	39,53					
300	16,0	4,11	64,57	35,43				
212	12,0	3,08	67,65	32,35				
150	18,0	4,62	72,27	27,73				
106	18,0	4,62	76,90	23,10				
75	19,0	4,88	81,77	18,23				
53	20,0	5,13	86,91	13,09				
45	4,0	1,03	87,93	12,07				
38	6,0	1,54	89,47	10,53				
25	9,0	2,31	91,79	8,21				
20	4,0	1,03	92,81	7,19				
< 20	28,0	7,19	100,00	0,00				

Tabela 5. Resultados da análise granulométrica da amostra WFA-02.

Fonte: Autor (2018).

A Figura 07, apresenta o gráfico com a distribuição granulométrica das amostras WFA-01 e WFA-02.

Figura 7 - Distribuição granulométrica das amostras WFA-01 e WFA-02.

Fonte: Autor (2018).

A curva apresenta a distribuição granulométrica passante acumulada nas malhas em micrômetros das amostras WFA-01 e WFA-02 e pode ser observado que a amostra WFA-01 apresenta uma granulometria mais fina que a amostra WFA-02.

4.2 Análise granuloquímica dasamostrasWFA-01 e WFA-02

Os resultados das análises químicas global e por faixa da amostra utilizadas neste trabalho nas Tabelas 06 e 07.

				Amostra '	WFA-01	- Análise	granulo	química)			
Aberturas						Teores (%)				Distrib	ouição
(mm)	(%)	Fe	SiOz	AI2O3	Mn	Р	MgO	TiO₂	PPC	FeO	% Metal	% SiOչ
Rom	100,0	40,29	34,83	0,60	0,04	0,023	0,06	0,05	2,46	1,94	100,0	100,0
+ 12,50	8,4	51,81	18,12	0,24	0,02	0,044	0,08	0,02	3,92	1,72	10,8	4,4
* +6,35	13,6	40,63	34,06	0,62	0,05	0,024	0,06	0,04	2,55	1,15	13,7	13,3
* +1,00	20,1	49,28	21,96	0,49	0,05	0,033	0,05	0,02	2,99	2,15	24,6	12,7
* +0,15	14,6	35,45	41,98	0,33	0,07	0,022	0,07	0,02	2,42	3,16	12,8	17,5
< 0,15	43,4	35,42	41,86	0,81	0,04	0,015	0,06	0,09	1,91	1,72	38,1	52,1

Tabela 6. Resultados da análise granuloquímica da amostra WFA-01.

Fonte: Autor (2018).

Tabela 7. Resultados da análise granuloquímica da amostra WFA-02.

				Amostra '	₩FA-02	 Análise 	e granule	oquímica	3			
Aberturas						Distrit	ouição					
(mm)	(%)	Fe	SiOz	AI2O₃	Mn	Р	MgO	TiOz	PPC	FeO	% Metal	% SiO₂
Rom	100,0	60,12	6,45	2,10	0,01	0,026	0,07	0,06	1,75	1,27	100,0	100,0
+12,50	9,8	63,41	2,69	2,19	0,00	0,018	0,09	0,04	1,45	2,01	10,4	4,1
+6,35	16,9	59,58	7,08	2,03	0,01	0,030	0,09	0,07	1,83	1,15	16,7	18,5
+1,00	26,3	62,44	3,16	2,14	0,00	0,024	0,07	0,05	1,85	1,29	27,3	12,9
+0,15	19,3	61,07	6,19	1,18	0,007	0,020	0,09	0,05	1,22	1,15	19,6	18,5
< 0,15	27,7	56,43	10,69	2,71	0,01	0,032	0,05	0,09	2,09	1,15	26,0	46,0

Fonte: Autor (2018).

As amostras apresentaram teores de ferro distintos no ROM, sendo que a amostra denominada de WFA-01 apresentou um teor de ferro de 40,29 %, teor este característico de um material itabirítico, a amostra denominada de WFA-02, apresentou um teor de ferro no ROM de 60,12 % de ferro, podendo ser classificada como itabirito rico. A amostra típica de itabirito pobre apresentou-se 43,4 % da massa na faixa menor que 0,15 mm, enquanto a amostra denominada de itabirito rico apresentou apenas 27,7 % de materiais menores que 0,15 mm.

4.3 Análise mineralógica das amostras WFA-01 e WFA-02

Os resultados das análises mineralógicas estão apresentados nas Tabelas 08 e do grau de liberação do Quartzo na Tabela 09.

Análise Mineralógi	ca (%)	
Amostra	WFA-01	WFA-02
Hematita lamelar monocristalina	35,28	33,25
Hematita granular monocritalina	17,52	16,51
Hematita lamelar policristalina	3,34	2,14
Hematita granular policristalina	0,17	0,13
Hematita lobular	0,79	12,99
Martita	0,10	0,21
Magnetita	0,00	0,00
Goethita	0,02	0,11
Agregado	0,00	0,21
Quartzo	42,77	34,33
Gibbsita	0,00	0,08
Outros	0,02	0,03
Total	100,00	100,00

Tabela 8. Resultados na análise mineralógica das amostras WFA-01 e WFA-02

Fonte: Autor (2018).

A amostra utilizada neste estudo é composta essencialmente por hematitas e quartzo, contendo um pequeno percentual de martita e goethita, sendo o mineral portador de ferro que difere uma da outra é o percentual de hematita lobular que é 0.79 % na amostra WFA-01 e 12,99 na amostra WFA-02.

Tabela 9. Resultados do grau de liberação do Quartzo das amostras WFA-01 e WFA-02

Grau de Liberação G)uartzo (%)
Amostra	WFA-01	WFA-02
>0,105mm	55	67
<0,105mm e >0,075mm	73	73
<0,075mm e >0,044mm	77	77
<0,044mm	92	92

Fonte: Autor (2018).

As partículas das amostras não se mostram liberadas nas faixas avaliadas, porém a amostra WFA-01, tem um grau de liberação menor que a amostra WFA-02 na faixa > 0,105 mm.

As Figuras 08 e 09 mostram fotomicrografia das amostras utilizadas neste estudo, sendo que a Figura 8, mostra detalhes dos minerais da amostra WFA-01 e a Figura 9 mostram detalhes da amostra WFA-02.

Figura 8 - Fotomicrografia da amostra WFA-01

Figura 9 - Fotomicrografia da amostra WFA-02

Fonte: Autor (2018).

Vale ressaltar que fotos foram tomadas em seções polidas de partículas, da fração entre 0,210mm e 0,105mm, embutidas em resina e com microscópio ótico polarizante para observação em luz transmitida e refletida, da marca LEICA, modelo DM 750P, com câmera digital acoplada.

4.4 Resultados dos testes de concentração por separação magnética das amostras WFA-01 e WFA-02

As Tabelas 10 e 11, mostram os resultados dos testes de concentração por jigagem das amostras WFA-01 e WFA-02, vale ressaltar que a concentração por jigagem foi realizada em Jigue estático na faixa entre 6,35 e 1,0 mm das amostras, a Tabela 10, mostra o resultado da concentração com a amostra WFA-01 e a Tabela 11, mostra o resultado da concentração da amostra WFA-02.

		- 1	Amostra	WFA-01	- Testes	Jigue Fa	aixa -6,3	5 +1,0 mi	m			
Massa						Teores (%)				Distrib	puição
、 (g)	(%)	Fe	SiO₂	AI2O3	Mn	Р	MgO	TiO₂	PPC	FeO	% Metal	% SiOչ
1220	100,0	51,42	19,08	0,44	0,08	0,036	0,07	0,04	3,36	1,45	100,0	100,0
862	70,7	51,35	19,38	0,41	0,05	0,037	0,08	0,04	3,38	1,44	70,6	71,8
91	7,5	49,96	20,60	0,48	0,05	0,041	0,05	0,03	3,79	1,44	7,2	8,1
248	20,3	52,67	17,18	0,39	0,09	0,033	0,07	0,03	3,10	1,58	20,8	18,3
19	1,6	45,47	22,68	2,24	1,68	0,035	0,08	0,12	4,04	0,43	1,4	1,9
	Massa (g) 1220 862 91 248 19	Massa (g) (%) 1220 100,0 862 70,7 91 7,5 248 20,3 19 1,6	Massa Fe (g) (%) Fe 1220 100,0 51,42 862 70,7 51,35 91 7,5 49,96 248 20,3 52,67 19 1,6 45,47	Massa G SiO₂ (g) (%) Fe SiO₂ 1220 100,0 51,42 19,08 862 70,7 51,35 19,38 91 7,5 49,96 20,60 248 20,3 52,67 17,18 19 1,6 45,47 22,68	Massa Fe SiO ₂ Al2O ₃ (g) (%) Fe SiO ₂ Al2O ₃ 1220 100,0 51,42 19,08 0,44 862 70,7 51,35 19,38 0,41 91 7,5 49,96 20,60 0,48 248 20,3 52,67 17,18 0,39 19 1,6 45,47 22,68 2,24	Amostra WFA-01 - Testes Massa Massa Massa Massa Massa Massa Massa Massa Massa Massa Massa Massa Massa Massa Massa Massa Massa Massa Massa Massa Massa Massa Massa Massa Massa Massa <th< td="" th<=""><td>Amostra WFA-01 - Testes Jigue Fa Massa Teores (% (g) (%) Fe SiO₂ Al2O₃ Mn P 1220 100,0 51,42 19,08 0,44 0,08 0,036 862 70,7 51,35 19,38 0,41 0,05 0,037 91 7,5 49,96 20,60 0,48 0,05 0,041 248 20,3 52,67 17,18 0,39 0,09 0,033 19 1,6 45,47 22,68 2,24 1,68 0,035</td><td>Amostra WFA-01 - Testes Jigue Faixa -6,3 Massa Teores (%) (g) (%) Fe SiO₂ Al2O₃ Mn P MgO 1220 100,0 51,42 19,08 0,44 0,08 0,036 0,07 862 70,7 51,35 19,38 0,41 0,05 0,037 0,08 91 7,5 49,96 20,60 0,48 0,05 0,041 0,05 248 20,3 52,67 17,18 0,39 0,09 0,033 0,07 19 1,6 45,47 22,68 2,24 1,68 0,035 0,08</td><td>Amostra WFA-01 - Testes Jigue Faixa -6,35 +1,0 mi Massa Teores (%) (g) (%) Fe SiO₂ Al2O₃ Mn P MgO TiO₂ 1220 100,0 51,42 19,08 0,44 0,08 0,036 0,07 0,04 862 70,7 51,35 19,38 0,41 0,05 0,037 0,08 0,04 91 7,5 49,96 20,60 0,48 0,05 0,041 0,05 0,033 0,07 0,03 248 20,3 52,67 17,18 0,39 0,09 0,033 0,07 0,03 19 1,6 45,47 22,68 2,24 1,68 0,035 0,08 0,12</td><td>Amostra WFA-01 - Testes Jigue Faixa -6,35 +1,0 mm Massa Teores (%) (g) (%) Fe SiO₂ Al2O₃ Mn P MgO TiO₂ PPC 1220 100,0 51,42 19,38 0,44 0,08 0,036 0,07 0,04 3,38 862 70,7 51,35 19,38 0,41 0,05 0,037 0,08 0,04 3,38 91 7,5 49,96 20,60 0,48 0,05 0,041 0,05 0,03 3,79 248 20,3 52,67 17,18 0,39 0,09 0,033 0,07 0,03 3,10 19 1,6 45,47 22,68 2,24 1,68 0,035 0,08 0,12 4,04</td><td>Amostra WFA-01 - Testes Jigue Faixa -6,35 +1,0 mm Massa Teores (%) (g) (%) Fe SiO₂ Al2O₃ Mn P MgO TiO₂ PPC FeO 1220 100,0 51,42 19,38 0,41 0,05 0,037 0,08 0,04 3,38 1,44 862 70,7 51,35 19,38 0,41 0,05 0,037 0,08 0,04 3,38 1,44 91 7,5 49,96 20,60 0,48 0,05 0,041 0,05 0,03 3,79 1,44 248 20,3 52,67 17,18 0,39 0,09 0,33 0,07 0,03 3,10 1,58 19 1,6 45,47 22,68 2,24 1,68 0,035 0,08 0,12 4,04 0,43</td><td>Amostra \/FA-01 - Testes Jigue Faixa -6,35 +1,0 mm Massa Teores (%) Distribution (g) (%) Fe SiO₂ Al2O₃ Mn P MgO TiO₂ PPC FeO % Metal 1220 100,0 51,42 19,38 0,44 0,08 0,036 0,07 0,04 3,38 1,45 100,0 862 70,7 51,35 19,38 0,41 0,05 0,037 0,08 0,04 3,38 1,44 70,6 91 7,5 49,96 20,60 0,48 0,05 0,041 0,05 0,03 3,79 1,44 72,2 248 20,3 52,67 17,18 0,39 0,09 0,033 0,07 0,03 3,10 1,58 20,8 19 1,6 45,47 22,68 2,24 1,68 0,035 0,08 0,12 4,04 0,43 1,44</td></th<>	Amostra WFA-01 - Testes Jigue Fa Massa Teores (% (g) (%) Fe SiO₂ Al2O₃ Mn P 1220 100,0 51,42 19,08 0,44 0,08 0,036 862 70,7 51,35 19,38 0,41 0,05 0,037 91 7,5 49,96 20,60 0,48 0,05 0,041 248 20,3 52,67 17,18 0,39 0,09 0,033 19 1,6 45,47 22,68 2,24 1,68 0,035	Amostra WFA-01 - Testes Jigue Faixa -6,3 Massa Teores (%) (g) (%) Fe SiO₂ Al2O₃ Mn P MgO 1220 100,0 51,42 19,08 0,44 0,08 0,036 0,07 862 70,7 51,35 19,38 0,41 0,05 0,037 0,08 91 7,5 49,96 20,60 0,48 0,05 0,041 0,05 248 20,3 52,67 17,18 0,39 0,09 0,033 0,07 19 1,6 45,47 22,68 2,24 1,68 0,035 0,08	Amostra WFA-01 - Testes Jigue Faixa -6,35 +1,0 mi Massa Teores (%) (g) (%) Fe SiO ₂ Al2O ₃ Mn P MgO TiO ₂ 1220 100,0 51,42 19,08 0,44 0,08 0,036 0,07 0,04 862 70,7 51,35 19,38 0,41 0,05 0,037 0,08 0,04 91 7,5 49,96 20,60 0,48 0,05 0,041 0,05 0,033 0,07 0,03 248 20,3 52,67 17,18 0,39 0,09 0,033 0,07 0,03 19 1,6 45,47 22,68 2,24 1,68 0,035 0,08 0,12	Amostra WFA-01 - Testes Jigue Faixa -6,35 +1,0 mm Massa Teores (%) (g) (%) Fe SiO ₂ Al2O ₃ Mn P MgO TiO ₂ PPC 1220 100,0 51,42 19,38 0,44 0,08 0,036 0,07 0,04 3,38 862 70,7 51,35 19,38 0,41 0,05 0,037 0,08 0,04 3,38 91 7,5 49,96 20,60 0,48 0,05 0,041 0,05 0,03 3,79 248 20,3 52,67 17,18 0,39 0,09 0,033 0,07 0,03 3,10 19 1,6 45,47 22,68 2,24 1,68 0,035 0,08 0,12 4,04	Amostra WFA-01 - Testes Jigue Faixa -6,35 +1,0 mm Massa Teores (%) (g) (%) Fe SiO ₂ Al2O ₃ Mn P MgO TiO ₂ PPC FeO 1220 100,0 51,42 19,38 0,41 0,05 0,037 0,08 0,04 3,38 1,44 862 70,7 51,35 19,38 0,41 0,05 0,037 0,08 0,04 3,38 1,44 91 7,5 49,96 20,60 0,48 0,05 0,041 0,05 0,03 3,79 1,44 248 20,3 52,67 17,18 0,39 0,09 0,33 0,07 0,03 3,10 1,58 19 1,6 45,47 22,68 2,24 1,68 0,035 0,08 0,12 4,04 0,43	Amostra \/FA-01 - Testes Jigue Faixa -6,35 +1,0 mm Massa Teores (%) Distribution (g) (%) Fe SiO ₂ Al2O ₃ Mn P MgO TiO ₂ PPC FeO % Metal 1220 100,0 51,42 19,38 0,44 0,08 0,036 0,07 0,04 3,38 1,45 100,0 862 70,7 51,35 19,38 0,41 0,05 0,037 0,08 0,04 3,38 1,44 70,6 91 7,5 49,96 20,60 0,48 0,05 0,041 0,05 0,03 3,79 1,44 72,2 248 20,3 52,67 17,18 0,39 0,09 0,033 0,07 0,03 3,10 1,58 20,8 19 1,6 45,47 22,68 2,24 1,68 0,035 0,08 0,12 4,04 0,43 1,44

Tabela 10. Resultado do teste de concentração por jigue (- 6,35 + 0,15 mm) da amostra WFA-01

Fonte: Autor (2018).

Tabela 11. Resultado do teste de concentração por jigue (- 6,35 + 0,15 mm) da amostra WFA-02

			A	mostra	WFA-02	- Testes	Jigue Fa	aixa -6,3	5 +1,0 m	m			
Camadas	Massa						Teores (%))				Distrib	ouição
	, (g)	(%)	Fe	SiO₂	AI2O3	Mn	Р	MgO	TiO₂	PPC	FeO	% Metal	% SiO ₂
Rom	1656	100,0	62,66	3,74	1,54	0,05	0,029	0,10	0,04	1,35	1,39	121,8	19,6
1	1010	61,0	63,18	3,14	1,45	0,01	0,026	0,10	0,04	1,17	1,44	74,9	10,0
2	330	19,9	62,76	3,75	1,81	0,01	0,034	0,10	0,05	1,58	1,58	24,3	3,9
Fundo	218	13,2	64,07	2,29	1,26	0,01	0,036	0,08	0,05	1,26	1,29	16,4	1,6
Resido	98	5,9	53,81	13,16	2,11	0,77	0,032	0,07	0,09	2,55	0,43	6,2	4,1

Fonte: Autor (2018).

Como visualizado nas Tabelas 10 e 11, a concentração neste tipo de equipamento para ambas as amostras não foi eficiente, uma vez que não teve enriquecimento, ou enriquecimento irrisório do material concentrado.

4.5 Resultados dos testes de concentração por separação magnética das amostras WFA-01 e WFA-02

As Tabelas 12 a 17, mostram os resultados dos testes de concentração por separação magnética das amostras WFA-01 e WFA-02, vale ressaltar que a concentração por separação magnética, foi realizada na faixa < 0,15 mm, no ROM cominuído em 0,15mm e na faixa < 1,0 + 0,15 mm. A Tabela 12, mostra o resultado da concentração com a amostra WFA-01 da faixa <0,15 mm, Tabela 13, mostra o resultado da concentração da amostra WFA-01 do ROM cominuído a 0,15 mm e a Tabela 14, mostra o resultado da concentração da concentração da amostra WFA-01 da faixa <1,0 + 0,15 mm.A Tabela 15, mostra o resultado da concentração com a amostra WFA-02 da faixa <0,15 mm, Tabela 16, mostra o resultado da concentração da amostra WFA-02

02 do ROM cominuído a 0,15 mm e a Tabela 17, mostra o resultado da concentração da amostra WFA-02 da faixa <1,0 + 01,5 mm.

				Ensaio Co	ncentração Ma	agnética - Am	ostra WFA-01	- faixa < 0,15	mm				
Fluxe	Ma	622					Teores (%)					Distril	ouição
Fluxo	(g)	(%)	Fe	SiO ₂	Al ₂ O ₃	Mn	Р	MgO	TiO ₂	PPC	FeO	% Metal	% SiO ₂
- Alimentação	190,0	100,0	35,38	42,59	1,07	0,04	0,021	0,09	0,06	1,91	1,06	100,0	100,0
- Conc. 2000 Gaus	34,0	17,9	62,70	5,38	0,32	0,02	0,015	0,08	0,05	1,05	2,45	31,7	2,3
- Conc. 6000 Gaus	51,0	26,8	57,16	12,15	0,42	0,03	0,023	0,10	0,08	1,95	1,15	43,4	7,7
- Conc. 9000 Gaus	15,0	7,9	46,70	24,66	0,78	0,07	0,041	0,12	0,09	3,79	1,15	10,4	4,6
- Conc. 12000 Gaus	9,0	4,7	35,36	40,32	0,78	0,09	0,038	0,13	0,08	3,86	1,01	4,7	4,5
- Conc. 15000 Gaus	4,0	2,1	24,15	56,80	0,86	0,06	0,035	0,11	0,07	0,00	0,00	1,4	2,8
 Não Magnético 	77,0	40,5	7,26	82,19	1,94	0,03	0,015	0,07	0,05	1,78	0,43	8,3	78,2

Tabela 12. Resultado do teste de concentração por separação magnética (- 0,15 mm) da amostra WFA-01

Fonte: Autor (2018).

Tabela 13. Resultado do teste de concentração por separação magnética (ROM cominuído em 0,15 mm) da amostra WFA-01

			I	Ensaio Concer	itração Magné	tica - Amostra	WFA-01 - rom	cominuido - O),15 mm					
Fluxe	Ma	ssa					Teores (%)					Distribuição		
Fluxo	(g)	(%)	Fe	SiO ₂	Al ₂ O ₃	Mn	Р	MgO	TiO ₂	PPC	FeO	% Metal	% SiO ₂	
- Alimentação	859,0	100,0	41,33	34,31	0,63	0,06	0,026	0,08	0,10	2,49	1,77	100,0	100,0	
- Conc. 2000 Gaus	240,0	27,9	56,65	13,42	0,22	0,04	0,019	0,06	0,02	1,62	4,03	38,3	10,9	
- Conc. 6000 Gaus	154,0	17,9	57,94	11,40	0,30	0,06	0,026	0,09	0,05	2,38	1,15	25,1	6,0	
- Conc. 9000 Gaus	84,0	9,8	56,91	12,63	0,52	0,13	0,049	0,08	0,05	3,76	1,01	13,5	3,6	
- Conc. 12000 Gaus	41,0	4,8	50,59	19,45	0,56	0,13	0,051	0,11	0,06	4,59	0,72	5,8	2,7	
- Conc. 15000 Gaus	32,0	3,7	49,50	19,54	0,63	0,15	0,058	0,11	0,05	5,62	1,15	4,5	2,1	
- Não Magnético	308,0	35,9	14,75	71,46	1,14	0,05	0,019	0,09	0,23	2,26	0,72	12,8	74,7	

Fonte: Autor (2018).

Tabela 14. Resultado do teste de concentração por separação magnética (- 1,0 + 0,15 mm) da amostra WFA-01

				Ensaio	Deslamagem -	Amostra WF	A-01 - Faixa <	1,0 +>0,15 mr	n						
r.	Ma	558			Teores (%)										
Fluxo	(g)	(%)	Fe	SiO ₂	Al ₂ O ₃	Mn	Ρ	MgO	TiO ₂	PPC	FeO	% Metal	% SiO ₂		
- Alimentação	400,0	100,0	35,26	43,62	0,38	0,05	0,019	0,08	0,03	1,85	1,25	100,0	100,0		
- Conc. 2000 Gaus	160,0	40,0	49,53	22,96	0,33	0,05	0,020	0,09	0,03	1,80	2,16	56,2	21,1		
- Conc. 6000 Gaus	66,0	16,5	52,01	19,25	0,39	0,06	0,028	0,07	0,05	2,40	0,43	24,3	7,3		
- Conc. 9000 Gaus	31,0	7,8	45,45	26,20	0,55	0,11	0,043	0,10	0,04	4,14	0,86	10,0	4,7		
- Conc. 12000 Gaus	22,0	5,5	33,93	42,15	0,55	0,11	0,041	0,10	0,03	4,35	0,43	5,3	5,3		
- Conc. 15000 Gaus	5,0	1,3	36,42	38,57	0,53	0,12	0,036	0,08	0,04	0,00	1,15	1,3	1,1		
- Não Magnético	116,0	29,0	3,53	91,13	0,38	0,02	0,002	0,06	0,02	0,59	0,72	2,9	60,6		

Os resultados dos testes de concentração magnética com a amostra WFA-01, nos mostra a dificuldade de concentração por separação magnética, sendo apenas a concentração da faixa abaixo de o,15 mm que obteve um melhor teor de ferro no concentrado, mas apresentou uma facilidade de obtenção de teor de ferro baixo nos rejeito.

				Ensaio Co	oncentração M	agnética - Am	ostra WFA-02	- faixa < 0,15 n	nm				
Flue	Ma	ssa					Teores (%)					Distrik	ouição
Fluxo	(g)	(%)	Fe	SiO ₂	Al ₂ O ₃	Mn	Р	MgO	TiO ₂	PPC	FeO	% Metal	% SiO ₂
- Alimentação	232,0	100,0	60,86	5,02	2,00	0,01	0,044	0,08	0,13	3,64	0,88	100,0	100,0
- Conc. 2000 Gaus	20,0	8,6	64,75	2,00	0,80	0,01	0,012	0,08	0,04	0,86	1,87	9,2	3,4
- Conc. 6000 Gaus	60,0	25,9	63,78	2,90	0,98	0,01	0,017	0,07	0,06	0,96	1,29	27,1	14,9
- Conc. 9000 Gaus	70,0	30,2	62,49	3,95	1,38	0,01	0,029	0,10	0,10	4,79	0,72	31,0	23,8
- Conc. 12000 Gaus	20,0	8,6	62,33	3,73	1,61	0,01	0,04	0,09	0,12	2,40	0,36	8,8	6,4
- Conc. 15000 Gaus	6,0	2,6	62,17	3,51	1,84	0,01	0,044	0,09	0,14	0,00	0,00	2,6	1,8
- Não Magnético	56,0	24,1	53,63	10,32	4,46	0,03	0,106	0,06	0,29	6,90	0,58	21,3	49,6

Tabela 15. Resultado do teste de concentração por separação magnética (- 0,15 mm) da amostra WFA-02

Fonte: Autor (2018).

Tabela 16. Resultado do teste de concentração por separação magnética (ROM cominuído em 0,15 mm) da amostra WFA-02

			E	Insaio Concen	itração Magnét	tica - Amostra	WFA-02 - rom	cominuido - O	,15 mm				
- Fluine	Ma	ssa					Teores (%)					Distrik	ouição
Fluxo	(g)	(%)	Fe	SiO ₂	Al ₂ O ₃	Mn	Р	MgO	TiO ₂	PPC	FeO	% Metal	% SiO ₂
- Alimentação	955,0	100,0	59,00	8,19	2,07	0,01	0,031	0,09	0,07	1,87	1,26	100,0	100,0
- Conc. 2000 Gaus	424,0	44,4	65,46	1,95	0,68	0,00	0,012	0,10	0,04	0,79	2,01	49,3	10,6
- Conc. 6000 Gaus	163,0	17,1	64,12	2,77	0,93	0,01	0,020	0,11	0,06	0,94	0,72	18,5	5,8
- Conc. 9000 Gaus	124,0	13,0	63,67	2,79	1,08	0,01	0,029	0,12	0,07	1,27	0,72	14,0	4,4
- Conc. 12000 Gaus	66,0	6,9	62,18	3,90	1,90	0,01	0,053	0,10	0,10	2,19	1,58	7,3	3,3
- Conc. 15000 Gaus	25,0	2,6	60,05	5,23	2,72	0,01	0,066	0,08	0,13	2,80	0,72	2,7	1,7
- Não Magnético	153,0	16,0	30,33	37,94	7,89	0,03	0,081	0,03	0,18	6,04	0,14	8,2	74,3

				Ensaio	Deslamagem	- Amostra WF	A-02 - Faixa <	1,0 +>0,15 mm					
ri	Ma	ssa					Teores (%)					Distrik	ouição
FIUXO	(g)	(%)	Fe	SiO ₂	Al ₂ O ₃	Mn	Р	MgO	TiO ₂	PPC	FeO	% Metal	% SiO ₂
- Alimentação	328,5	100,0	61,04	6,66	1,29	0,01	0,021	0,10	0,05	1,17	1,06	100,0	100,0
- Conc. 2000 Gaus	143,0	43,5	62,45	5,18	1,17	0,01	0,019	0,09	0,05	1,02	0,72	44,5	33,9
- Conc. 6000 Gaus	164,0	49,9	63,41	3,53	1,01	0,01	0,019	0,12	0,04	1,05	1,44	51,9	26,5
- Conc. 9000 Gaus	8,0	2,4	61,92	4,45	1,62	0,01	0,044	0,11	0,11	2,06	0,00	2,5	1,6
- Conc. 12000 Gaus	1,5	0,5	56,63	9,34	2,79	0,02	0,072	0,08	0,14	1,03	0,00	0,4	0,6
- Conc. 15000 Gaus	1,0	0,3	51,33	14,23	3,96	0,03	0,099	0,05	0,18	0,00	0,00	0,3	0,7
- Não Magnético	11,0	3,3	8,34	73,13	6,38	0,03	0,039	0,04	0,10	4,52	0,86	0,5	36,8

Tabela 17. Resultado do teste de concentração por separação magnética (- 1,0 + 0,15 mm) da amostra WFA-02

Fonte: Autor (2018).

Os resultados dos testes de concentração magnética com a amostra WFA-02, nos mostra a dificuldade de concentração, embora o enriquecimento fosse melhor que o da amostra WFA-01, porém com grande dificuldade de se obter teor de rejeito que possa ser descartado.

4.5 Resultados dos testes experimentais de deslamagem das amostras WFA-01 e WFA-02

As Tabelas 18 e 19, mostram os resultados dos testes de deslamagem das amostras WFA-01 e WFA-02, a Tabela 11, apresenta o resultado da lama gerada na faixa < 0,15mm e lama do ROM cominuído a 0,15 mm da amostra WFA-01 e a Tabela 19, apresentam o resultado da lama gerada na faixa < 0,15mm e lama do ROM cominuído a 0,15 mm da amostra WFA-02.

Tabela 18. Resultado da lama gerada da amostra WF	FA-01 após deslamagem
---	-----------------------

	Ensaio Deslamagem - Amostra WFA-01												
Fluxe					Teores (%)							
Fluxo	Fe	SiO ₂	Al ₂ O ₃	Mn	Ρ	MgO	TiO ₂	PPC	FeO				
Lama faixa -0,15 mm	17,39	19,98	8,60	0,14	0,09	0,10	0,19	8,45	1,00				
Lama rom cominuido	41,49	28,06	2,90	0,13	0,06	0,10	0,09	5,84	0,57				

	Ensaio Deslamagem - Amostra WFA-02											
Eluxo					Teores (%)						
Fluxo	Fe	SiO ₂	AI_2O_3	Mn	Ρ	MgO	TiO ₂	PPC	FeO			
Lama faixa -0,15 mm	15,82	34,48	19,28	14,43	0,05	0,17	0,03	0,41	12,26			
Lama rom cominuido	36,92	34,86	19,36	14,15	0,05	0,17	0,03	0,41	11,43			
			F	onte: Auto	or (2018)							

Tabela 19. Resultado da lama gerada da amostra WFA-02 após deslamagem

Pode-se observar nas Tabelas 18 e 19 que os teores de ferro na lama da faixa menor que 0,15 mm em abas as amostras, apresentou um teor de ferro menor que a lama gerada pelo ROM cominuído a 0,15 mm.

4.5 Resultados dos testes experimentais de flotação das amostras WFA-01 e WFA-02

As Tabelas 20 e 21, mostram os resultados dos testes de flotação realizados com a amostra WFA-01, sendo que a Tabela 20 mostra os resultados da flotação com a faixa < 0,15 mm e a Tabela 20, mostra o resultado com a amostra de ROM cominuído a 0,15 mm.As Tabelas 22 e 23, mostram os resultados dos testes de flotação realizados com a amostra WFA-02, sendo que a Tabela 22 mostra os resultados da flotação com a faixa < 0,15 mm e a Tabela 23, mostra o resultado com a amostra de ROM cominuído a 0,15 mm e a faixa < 0,15 mm e a Tabela 24, mostra o resultado com a amostra de ROM cominuído a 0,15 mm e a Tabela 24, mostra um resumo dos parâmetros analisados na flotação.

			E	insaio Flot	ação - Amos	stra WFA-0	1 - Faixa < (),15 mm nai	tural				
Fluxo	Ma	ssa					Teores (%		Distribuição				
Fluxo	(g)	(%)	Fe	SiO ₂	Al203	Mn	Р	MgO	TiO ₂	PPC	FeO	% Metal	% SiO ₂
- Alim. Flotação	413,0	100,0	35,08	43,63	0,56	0,03	0,02	0,07	0,04	1,50	0,86	100,0	100,0
- Concentrado	157,0	38,0	63,92	2,34	0,48	0,04	0,03	0,09	0,05	2,47	0,86	62,5	38,0
- Rejeito	256,0	62,0	17,39	68,96	0,60	0,03	0,01	0,06	0,03	0,91	0,86	37,5	62,0

Tabela 20. Resultado da flotação da amostra WFA-01 faixa <0,15mm

						,							
			En	saio Flotaç	ão - Amost	ra WFA-01	- ROM com	iinuído a 0,1	.5 mm				
Massa Teores (%)									Distribuição				
FIUXO	(g)	(%)	Fe	SiO ₂	Al2O3	Mn	Ρ	MgO	TiO ₂	PPC	FeO	% Metal	% SiO₂
- Alim. Flotação	440,0	100,0	40,94	35,61	0,38	0,06	0,022	0,07	0,03	2,16	1,84	100,0	100,0
- Concentrado	234,0	53,2	62,95	3,19	0,38	0,089	0,038	0,073	0,05	3,35	2,58	82,6	74,6
- Rejeito	206,0	46,8	15,93	72,44	0,39	0,03	0,003	0,06	0,02	0,80	1,00	17,4	25,4

Tabela 21. Resultado da flotação da amostra WFA-01 do ROM cominuído em 0,15mm

Fonte: Autor (2018).

Tabela 22. Resultado da flotação da amostra WFA-02 faixa <0,15mm

			E	nsaio Flot	ação - Amos	stra WFA-0	2 - Faixa < O),15 mm nat	ural				
Fluve	Ma	Massa						Distribuição					
Fluxo	(g)	(%)	Fe	SiO ₂	Al203	Mn	Р	MgO	TiO ₂	PPC	FeO	% Metal	% SiO ₂
- Alim. Flotação	438,0	100,0	42,85	24,03	2,05	0,01	0,03	0,08	0,07	1,72	1,49	100,0	100,0
- Concentrado	243,0	55,5	64,54	1,34	1,39	0,006	0,025	0,08	0,05	1,38	1,44	44,6	53,7
- Rejeito	195,0	44,5	15,82	52,31	2,89	0,01	0,04	0,08	0,10	2,14	1,55	55,4	46,3

Fonte: Autor (2018).

Tabela 23. Resultado da flotação da amostra WFA-02 do ROM cominuído em 0,15mm

			En	saio Flotaç	ão - Amost	ra WFA-02	- ROM com	inuído a 0,1	l5 mm					
Eluxo	Massa				Teores (%)								Distribuição	
Fluxo	(g)	(%)	Fe	SiO ₂	Al203	Mn	Р	MgO	TiO ₂	PPC	FeO	% Metal	% SiO ₂	
- Alim. Flotação	428,0	100,0	57,47	11,70	1,11	0,01	0,02	0,09	0,06	0,99	1,03	100,0	100,0	
- Concentrado	307,0	71,7	65,57	1,30	0,64	0,003	0,012	0,106	0,04	0,63	1,15	45,7	80,2	
- Rejeito	121,0	28,3	36,92	38,07	2,30	0,02	0,03	0,04	0,11	1,90	0,72	54,3	19,8	

Fonte: Autor (2018

Tabela 24. Resultado dos parâmetros de qualidade da flotação das amostras WFA-01 e WFA-02

	Parâmetros de avaliação											
Amostra	Recuper	Recuperações (%) IS (adm) Teores (%)										
	Massa	Metálica	Gaudin	Fe - Conc.	SiO ₂ - Conc.	Fe - Rej.						
WFA-01-Rom	53,2	82,6	9,5	63,0	3,2	15,9						
WFA-01- < 0,15 mm	38,0	62,5	10,4	63,9	2,3	17,4						
WFA-02-Rom	71,7	45,7	7,2	65,6	1,3	36,9						
WFA-02- < 0,15 mm	55,5	44,6	12,6	64,5	1,3	15,8						

Fonte: Autor (2018).

Pode-se observar nas Tabelas 20 a 24 os valores dos resultados obtidos nos processos de concentração por flotação e observa-se que é possível obter teor de

sílica no concentrado da amostra WFA-01 menor que 3,5 % e na amostra WFA-02 menor que 1,5 %, teores de ferro acima de 63,0 %, teores de ferro no rejeito maiores que 15,0 % e índice de seletividade maior que 7,0 % e pode ser observado que o índice de seletividade da amostra abaixo de 0,15 mm foi superior quando a amostra foi cominuído em 0,15 mm.

CONSIDERAÇÕES FINAIS

A partir dos testes realizados, ficou evidente a necessidade da caracterização tecnológica dos materiais para se conhecer as características relevantes de cada material.

Considerando as características granulométrica, observou-se que a amostra WFA-01 é mais fina que a amostra WFA-02.

Considerando as características químicas, os resultados mostraram que a amostra WFA-01 tem um teor global de ferro muito menor que a amostra WFA-02, ou seja a amostra WFA-01 apresentou um teor de ferro de 40,29 % e a amostra WFA-02, apresentou um teor de ferro de 60,12 %, também foi observado que esta amostra apresenta a faixa entre 12,5 e 32,5 mm como um produto natural com teor de ferro acima de 63,0 %.

Constata-se que na concentração gravítica da fração-6,35 + 1,0 mm, a amostra WFA-01 não apresentou enriquecimento e a amostra WFA-02 apresentou um pequeno enriquecimento.

Os resultados da concentração magnética da amostra WFA-01 da faixa < 0,15 mm apresentou um alto grau de enriquecimento, porém não atendendo as especificações de produto, enquanto que a amostra WFA-02 nesta mesma faixa mesmo tendo um enriquecimento menor, obteve material que pode ser considerado produto, vale ressaltar o que o teor da mesma é muito superior da amostra WFA-01.

Os resultados da concentração magnética da amostra WFA-01 da faixa entre 1,0 e 0,15 mm, apresentou baixo enriquecimento e da amostra WFA-02, por já apresentar alto teor de ferro na alimentação, apresentou material que pode ser produto.

Os resultados da concentração magnética da amostra WFA-01 do ROM cominuído em 0,15 mm apresentou um alto grau de enriquecimento, porém não atendendo as especificações de produto, enquanto que a amostra WFA-02 nesta mesma faixa mesmo tendo um enriquecimento menor, obteve material que pode ser considerado produto, vale ressaltar o que o teor da mesma é muito superior da amostra WFA-01

Os resultados da caracterização mineralógica indicam que as amostra WFA-01 e WFA-02 contém majoritariamente minerais portadores de ferro e quartzo, porem a amostra WFA-02 apresentou um teor muito elevado de hematita lobular, e este material tem comportamento característico na concentração magnética.

Os resultados do grau de liberação do quartzo, apresentam valores baixos, indicando dificuldades na etapa de concentração.

Foi observado na etapa de deslamagem que a lama gerada da faixa – 0,15 mm natural apresentou um teor de ferro menor que a lama gerada do ROM cominuído a 0,15 mm.

Os resultados dos testes de concentração por flotação, atingiram valores bastante elevado de ferro no concentrado acima de 62,9 e também altos teores de ferro nos rejeitos acima de 15,0 %, para ambas as amostras e para as duas faixas concentradas, indicando uma redução nas recuperações mássica e metálica do processo.

REFERÊNCIAS

Anderson, B. W. 1984. A identificação das gemas. Rio de Janeiro. Ao Livro Técnico. 460p.

A. Sampaio, Adão Benvindo da Luz e Fernando F. Lins, p.345 – 357, CETEM /2001 CETEM, 2008. Rochas & Minerais Industriais – usos e especificações

Tratamento de Minérios e Hidrometalurgia, In Memoriam Professor Andrey, P. Abib, Fundação Instituto Tecnológico do Estado de Pernambuco,1980

CHAVES, Arthur e RODRIGUES, W, Teoria e prática de Tratamento de Minérios vol.4

DANA, J. D. (1976) **Manual de mineralog**ia. Rev. Cornelius S. Hurlbut, Jr. Trad. Rui Ribeiro Franco. Rio de Janeiro: Livros Técnicos e Científicos, v.1, p.303-342.

DANA, J. D. (1976) **Manual de mineralogia**. Rev. Cornelius S. Hurlbut, Jr. Trad. Rui Ribeiro Franco. Rio de Janeiro: Livros Técnicos e Científicos, v.1, p.303-342.

DENVER Equipamento Co. Catálogos de divulgação DORR II, John Van N.;

BARBOSA, Aluízio Licínio de Miranda. **Geology and Ore Deposits of the Itabira District Minas Gerais, Brazil**. In: Geológica Survey Professional Paper 341-C. US Governament Printing Office: Washington, 1963Enciclopédia livre Wikipedia

Estrutura Interna da Terra.

Disponível em: http://pt.wikipedia.org/wiki/Estrutura_interna_da_Terra, acessado em 22/01/2012.

FISCOR, S. Flotation machines. Coal, p. 29-48, Aug .1942.

GAUDIN, A.M.Flotation. New York: Mc Graw Hill, 1956.

HURLBUT Jr. C.S. & Switzer G.S. 1980. Gemologia. Barcelona, Omega. 243p.

Klein C. & Hurlbut Jr. C.S. 1993. **Manual of Mineralogy**. 21. Ed. New York, John Wiley & Sons. 681p.

LAURINDO, Salles, LEAL, 2002, p.424

LUZ, A.B da, ALMEIDA, S.L.M. **Manual de usinas de beneficiamento**. Rio de Janeiro, CETEM / CNPq,1989.

PRESS, Siever, Grotzinger e Jordan - Para Entender a Terra – Ed. Bookman

SAMPAIO, J.A: CARVALHO, E.A.C :ANDRADE, D.G. Cobre Caraíba. In :Usinas de Beneficiamento de Minérios do Brasil, Editores João A. Sampaio, Adão Benvindo da Luz e Fernando F. Lins, p. 253-261, CETEM / 2001.

SANTANA, Paulo Penha. Flotação direta de minérios de ferro itabirítico. Belo Horizonte, 2012.

SANTANA, Ricardo Corrêa de. Análise da influência do tamanho da partícula na flotação na apatita em coluna. Uberlândia, 2007

SCHNELRATH, J: CORREIA, J.C.G: GUIMARÃES, R.C:TEIXEIRA, S.H.A. Serrana/ Mina Araxá. In: **Usinas de Beneficiamento de Minérios do Brasil**, Editores João SUTTILL. K.R.A technical buye's guide to mining chemicals. Engineering and Mining Journal, p.23-24, Aug .1991.

SUTULOV, A. Flotación de Minerais.Chile: Universidade de Concepción, 1963.

Teixeira, Toledo, Fairchild & Taioli, Decifrando a Terra, Ed. Oficina de Textos

TOTOU, Adriano Raimundo. Efeito da dispersão na deslamagem e flotação de polpas de minérios hematíticos itabiríticos. Ouro Preto, 2010.